The cone of Z-transformations on Lorentz cone

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semismooth Newton methods for the cone spectrum of linear transformations relative to Lorentz cones

We propose two semismooth Newton methods for seeking the eigenvalues of a linear transformation relative to Lorentz cones, by the natural equation reformulation and the normal equation reformulation, respectively, and establish their local quadratic convergence results under suitable conditions. The convergence analysis shows that the method based on the natural equation formulation is not infl...

متن کامل

Ela Characterization of P -property for Some Z-transformations on Positive Semidefinite Cone

The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)

متن کامل

Characterization of P-Property for some Z-Transformations on positive semidefinite cone

The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)

متن کامل

An LMI description for the cone of Lorentz-positive maps

Let Ln be the n-dimensional second order cone. A linear map from Rm to Rn is called positive if the image of Lm under this map is contained in Ln. For any pair (n,m) of dimensions, the set of positive maps forms a convex cone. We construct a linear matrix inequality (LMI) that describes this cone. Namely, we show that its dual cone, the cone of Lorentz-Lorentz separable elements, is a section o...

متن کامل

Lorentz Symmetry of Supermembrane in Light Cone Gauge Formulation

We prove the Lorentz symmetry of supermembrane theory in the light cone gauge to complete the program initiated by de Wit, Marquard and Nicolai. We give some comments on extending the formulation to the M(atrix) theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Linear Algebra

سال: 2019

ISSN: 1081-3810

DOI: 10.13001/1081-3810.4083